What is Argument? And the Rabbit Hole I’ve Found…

I went searching for more knowledge about argument. I fell into a rabbit hole. Help me make sense of this. Do you agree? Disagree? What are your thoughts?

“…there is a difference between mathematical arguments and scientific arguments. The difference is that scientific arguments are always based on evidence, whereas mathematical arguments never are. It is this difference that renders the findings of science provisional and the findings of mathematics eternal…Blurring the distinction between mathematical and scientific arguments leads to a misunderstanding of what science is about.” -NGSS Appendix L

Why Lesson Study?

Imagine a football team operating like a faculty at a school site.

Players (teachers) gather at the beginning of the season (school year) for some team-building and some pep talk (fall PD) about goals and visions for improvement from their coach (principal).

The players then study a playbook (curriculum) and some plays (instructional strategies) and maybe they practice them. Maybe they don’t. Once the season starts, they hardly ever observe each other run drills (routines). They definitely don’t scrimmage together. The coach may walk around once or twice, check some boxes on a list, and give that feedback to a player, but rarely does the coach model techniques or facilitate collaboration and discussion between players.

The players practice all year for one single game (student testing) that they don’t even believe is worth playing but everyone makes them prepare for it anyway because how else could we measure our effectiveness except through standardized test data. The players won’t find out until 4 months later how they did and how they compared to other teams (schools) in the league (district). Except by then, the offseason has happened, players have shifted teams, new playbooks have been adopted, perhaps new coaching has been hired, and it’s time to start the whole process again.

The season concludes without any player ever watching another player play.

How stupid is that?

Numberless Word Problem 3: Data Exploration in 2nd Grade

I worked with a team of amazing 2nd grade teachers this week as a part of an ongoing lesson study. They were in the latter chapters of their curriculum where the Measurement and Data content is often stuffed away as an afterthought because they aren’t “Focus Standards.”

And it’s a drag too because there’s so many rich opportunities for meaningful student discourse about data. That is, if it’s done right. Most textbooks suck all the life out of the content. Students need to understand that data tells a story; it has contextual meaning that is both cohesive and incomplete. Students need to learn how to ask questions about data and to learn to identify information gaps. In other words, students need to learn to be active mathematical agents rather than passive mathematical consumers.

We’d like to share with you what we learned about using Numberless Data Problems and crafting an open investigation into bar graphs that is engaging for all students. As always, feedback welcome. Let’s get better together.

Seesaw 2: A 3-Act Lesson for 6th Grade Expressions and Equations

How do we invite 6th (and 7th) grade students to authentically engage with an equation in a way that invites students (1) to appreciate how the structure of an equation models a context and (2) to dive deeper in to the meaning of the relationships between variables?

Instead of teaching students how to use the properties of equality to solve “one-step” equations first (which is like using a bazooka to kill a cockroach by the way), I’m wondering if there’s a way to start the exploration of equation solving by inviting students to experience the dynamic relationship between variables first.

Here’s my thinking on one way to do that. I’d love to hear your thoughts so we can get better together.