How Much Sugar in a Soda? A 3rd/4th Grade Division Problem

I conducted a lesson study with some elementary teachers.  We used Dan Meyer’s engaging lesson called Sugar Packets to get students talking about an interesting problem, sharing their thinking, showing what they know about division strategies.  Dan has the lesson listed as 6th grade ratio and proportional reasoning activity, but we found this problem to be suitable for both 3rd and 4th graders and possibly as a review for 5th graders.  There is a remainder in the solution.  And we found that this lesson works best if students haven’t had many opportunities to learn about remainders.  It’s a wonderful introduction to thinking about the contextual and mathematic meaning for the remainder.  (If you teach 3rd grade, I think you’ll find that your students will dig it!  Don’t let the remainder spook you off!)

This lesson addresses many of the Operation and Algebraic Thinking standards for 3rd and 4th grade.  It is also a rich opportunity for students to reason abstractly and quantitatively and to communicate their reasoning with each other.

So, give it a read and give it a go!  Let us know what you learn.  Let’s get better together.

Making Data and Stats Matter More in K-6, Part 1

Welcome back math geeks!

I love teaching young students about data and statistics.  And I enjoy finding ways to make data and statistics matter more to young students.  There are two curriculum practices that trouble me about how we teach students to think about data and statistics, especially at the K-6 level.  In this post, I’ll outline one of these troubling practices and my attempt to help to teachers work around this obstacle.

Why Lesson Study?

Imagine a football team operating like a faculty at a school site.

Players (teachers) gather at the beginning of the season (school year) for some team-building and some pep talk (fall PD) about goals and visions for improvement from their coach (principal).

The players then study a playbook (curriculum) and some plays (instructional strategies) and maybe they practice them. Maybe they don’t. Once the season starts, they hardly ever observe each other run drills (routines). They definitely don’t scrimmage together. The coach may walk around once or twice, check some boxes on a list, and give that feedback to a player, but rarely does the coach model techniques or facilitate collaboration and discussion between players.

The players practice all year for one single game (student testing) that they don’t even believe is worth playing but everyone makes them prepare for it anyway because how else could we measure our effectiveness except through standardized test data. The players won’t find out until 4 months later how they did and how they compared to other teams (schools) in the league (district). Except by then, the offseason has happened, players have shifted teams, new playbooks have been adopted, perhaps new coaching has been hired, and it’s time to start the whole process again.

The season concludes without any player ever watching another player play.

How stupid is that?

Numberless Word Problem 3: Data Exploration in 2nd Grade

I worked with a team of amazing 2nd grade teachers this week as a part of an ongoing lesson study. They were in the latter chapters of their curriculum where the Measurement and Data content is often stuffed away as an afterthought because they aren’t “Focus Standards.”

And it’s a drag too because there’s so many rich opportunities for meaningful student discourse about data. That is, if it’s done right. Most textbooks suck all the life out of the content. Students need to understand that data tells a story; it has contextual meaning that is both cohesive and incomplete. Students need to learn how to ask questions about data and to learn to identify information gaps. In other words, students need to learn to be active mathematical agents rather than passive mathematical consumers.

We’d like to share with you what we learned about using Numberless Data Problems and crafting an open investigation into bar graphs that is engaging for all students. As always, feedback welcome. Let’s get better together.