# Clothesline Math and the Power of Discourse

I want to share with you a video that shows the raw power of using Clothesline Math in your classroom to promote student to student discourse.  I share this video because I want you to see how clothesline activities generate student to student discourse and promote student thinking and math development.  And I want you to feel empowered to use this tool in your classroom.  And I invite you to share what you learn in your elementary, middle, or high school classrooms.

# “We’re Gonna Need a Different Denominator”

Check out this compeling video from Andrew Stadel. What do you notice? What do you wonder? How can this be used to teach students about adding fractions?

I conducted a lesson study about fractions with some 5th grade teachers.  We used Andrew’s elegantly simple lesson called Black Box 2 to get students talking about adding fractions with unlike denominators.  This task is ideal for introducing the intellectual need for finding a common denominator before adding fractions procedurally.  Student discourse is rich and meaningful and lively.  Give it a read.  You won’t be disappointed.

# Making Data and Stats Matter More in K-6, Part 2

Welcome back math geeks!

I love teaching young students about data and statistics.  And I enjoy finding ways to make data and statistics matter more to young students.  But I’m troubled by two curriculum practices about how we teach students to think about data and statistics, especially at the K-6 level.  This post is Part 2.  In my first post, I wrote about how data is often represented to students in heavily scaffolded textbook pages that rob students of the opportunity to purposely engage in thinking, wondering, and discourse…and a solution to this practice.  (If you missed Part 1, click here.)

In this post, I’ll outline another troubling practice and my attempt to help to teachers work around this obstacle.

# How Much Sugar in a Soda? A 3rd/4th Grade Division Problem

I conducted a lesson study with some elementary teachers.  We used Dan Meyer’s engaging lesson called Sugar Packets to get students talking about an interesting problem, sharing their thinking, showing what they know about division strategies.  Dan has the lesson listed as 6th grade ratio and proportional reasoning activity, but we found this problem to be suitable for both 3rd and 4th graders and possibly as a review for 5th graders.  There is a remainder in the solution.  And we found that this lesson works best if students haven’t had many opportunities to learn about remainders.  It’s a wonderful introduction to thinking about the contextual and mathematic meaning for the remainder.  (If you teach 3rd grade, I think you’ll find that your students will dig it!  Don’t let the remainder spook you off!)

This lesson addresses many of the Operation and Algebraic Thinking standards for 3rd and 4th grade.  It is also a rich opportunity for students to reason abstractly and quantitatively and to communicate their reasoning with each other.

So, give it a read and give it a go!  Let us know what you learn.  Let’s get better together.

# Making Desmos Elementary

For the past few weeks, I’ve had the fun opportunity to write for the Global Math Department newsletter.  Haven’t heard of the Global Math Department?  It’s great tool to find out what’s going on in the online math world about math teaching and watch professional development webinars.  Check the site out here and read about some of the fine folks that coordinate the work here.

In the last newsletter, Bridget Dunbar (@BridgetDunbar), Anna Bornstein (@Borschtwithanna), and I (@mathgeek76) wrote separately about the importance of grade level teachers sharing and learning from teachers at other grade levels.  Teachers of all levels have a lot to learn from each other.  You can find the complete newsletter here.  (If you sign up, you’ll get weekly newsletters straight to your inbox!)

Here’s what I wrote about using Desmos as an instructional tool in the elementary classroom.  While historically used by secondary teachers, several elementary teachers are creating a lot of useful stuff.  Give it a read.  Share your thinking.  And I invited you to a call to action.

# Punch-A-Bunch: A 3-Act Math Lesson on Probability

Welcome back math geeks!  I need your help making a lesson better.
I love Price is Right because many of the games require contestants to make predictions.  This often involves estimating prices of products.  But sometimes contestants have to make choices of a different nature, and these choices are ripe opportunities to think about probability and expected value.  And I love when a fruitful 3-Act Math opportunity presents itself.  (I’ve written about one before here.)

The example I want to share now doesn’t seem to fit a 3-Act format.  Maybe that’s because it’s not truly a 3-Act Math lesson.  But I don’t know what else to call it.  I’m curious about your thoughts on how to make it better.

Is it too clunky?
What grade levels will find this lesson useful?
What concepts/standards does it best target?
What opportunities did I miss?

I’m inviting your feedback in the comment section.  Thanks for helping me get better!

# Making Data and Stats Matter More in K-6, Part 1

Welcome back math geeks!

I love teaching young students about data and statistics.  And I enjoy finding ways to make data and statistics matter more to young students.  There are two curriculum practices that trouble me about how we teach students to think about data and statistics, especially at the K-6 level.  In this post, I’ll outline one of these troubling practices and my attempt to help to teachers work around this obstacle.

# My New Favorite Term: Abductive Reasoning

What is Abductive Reasoning?

I’m going to share my new favorite term:  abductive reasoning.  Maybe you’ve known about it for years and never told me about it.  (If that’s the case, you might be a jerk.)  Or maybe it’s new to you too.  (If that’s the case, let me know because I’m a little embarrassed I haven’t learned about abductive reasoning until recently.)

To recap, deductive reasoning is about making specific conclusions from general statements (like a math proof).  Inductive reasoning is about making generalizations about specific observations (like a science experiment).

By comparison, abductive reasoning is about making your best prediction based on incomplete information.

Abductive reasoning?!?!?!  Where have you been all my life?  Welcome to my lexicon.  Have a seat front and center and let’s talk.

# Numberless Word Problem 3: Data Exploration in 2nd Grade

I worked with a team of amazing 2nd grade teachers this week as a part of an ongoing lesson study. They were in the latter chapters of their curriculum where the Measurement and Data content is often stuffed away as an afterthought because they aren’t “Focus Standards.”

And it’s a drag too because there’s so many rich opportunities for meaningful student discourse about data. That is, if it’s done right. Most textbooks suck all the life out of the content. Students need to understand that data tells a story; it has contextual meaning that is both cohesive and incomplete. Students need to learn how to ask questions about data and to learn to identify information gaps. In other words, students need to learn to be active mathematical agents rather than passive mathematical consumers.

We’d like to share with you what we learned about using Numberless Data Problems and crafting an open investigation into bar graphs that is engaging for all students. As always, feedback welcome. Let’s get better together.

# Seesaw 2: A 3-Act Lesson for 6th Grade Expressions and Equations

How do we invite 6th (and 7th) grade students to authentically engage with an equation in a way that invites students (1) to appreciate how the structure of an equation models a context and (2) to dive deeper in to the meaning of the relationships between variables?

Instead of teaching students how to use the properties of equality to solve “one-step” equations first (which is like using a bazooka to kill a cockroach by the way), I’m wondering if there’s a way to start the exploration of equation solving by inviting students to experience the dynamic relationship between variables first.

Here’s my thinking on one way to do that. I’d love to hear your thoughts so we can get better together.