## What is Argument? And the Rabbit Hole I’ve Found…

I went searching for more knowledge about argument. I fell into a rabbit hole. Help me make sense of this. Do you agree? Disagree? What are your thoughts?

“…there is a difference between mathematical arguments and scientific arguments. The difference is that scientific arguments are always based on evidence, whereas mathematical arguments never are. It is this difference that renders the findings of science provisional and the findings of mathematics eternal…Blurring the distinction between mathematical and scientific arguments leads to a misunderstanding of what science is about.” -NGSS Appendix L

## Why Lesson Study?

Imagine a football team operating like a faculty at a school site.

Players (teachers) gather at the beginning of the season (school year) for some team-building and some pep talk (fall PD) about goals and visions for improvement from their coach (principal).

The players then study a playbook (curriculum) and some plays (instructional strategies) and maybe they practice them. Maybe they don’t. Once the season starts, they hardly ever observe each other run drills (routines). They definitely don’t scrimmage together. The coach may walk around once or twice, check some boxes on a list, and give that feedback to a player, but rarely does the coach model techniques or facilitate collaboration and discussion between players.

The players practice all year for one single game (student testing) that they don’t even believe is worth playing but everyone makes them prepare for it anyway because how else could we measure our effectiveness except through standardized test data. The players won’t find out until 4 months later how they did and how they compared to other teams (schools) in the league (district). Except by then, the offseason has happened, players have shifted teams, new playbooks have been adopted, perhaps new coaching has been hired, and it’s time to start the whole process again.

The season concludes without any player ever watching another player play.

How stupid is that?

## Seesaw 2: A 3-Act Lesson for 6th Grade Expressions and Equations

How do we invite 6th (and 7th) grade students to authentically engage with an equation in a way that invites students (1) to appreciate how the structure of an equation models a context and (2) to dive deeper in to the meaning of the relationships between variables?

Instead of teaching students how to use the properties of equality to solve “one-step” equations first (which is like using a bazooka to kill a cockroach by the way), I’m wondering if there’s a way to start the exploration of equation solving by inviting students to experience the dynamic relationship between variables first.

Here’s my thinking on one way to do that. I’d love to hear your thoughts so we can get better together.

## I’m on a Mission: Calculus for All!

I’m on a mission.  And I invite you to join me. I’m on a mission to tear calculus down from its ivory tower on the math landscape.  Even if you don’t know calculus, you can still join me because this mission is also for you. Here are a few myths that I would like to dispel on … Continue Reading

## The Objectives of Objectives, Part Three: Joy

One of the reasons why we teach is because we want our students to experience the JOY of mathematics. Mathematics should be about questioning, wondering, and the joy of discovery…and math classes should leave students wanting to know more math and do more math thinking. We cannot build an appreciation of math through content standards alone. Math classes should be filled with opportunities for students to have voice and a choice. At the very least, they need a voice in making meaning of problems and a choice in how they go about seeking a pathway to a solution.

But sometimes we (or our textbooks) squash all the joy out of a math lesson. We rob them of their right to notice math things, wonder about math ideas, or do messy math stuff. And lessons that focus on “measurable outcomes” with “explicitly defined objectives” often euthanize mathematical curiosity.

## The Objective of Objectives, Part Two: Headache First

Welcome back Math Geeks! I’ve been thinking a lot about the objectives of lesson objectives, and I’m committing to writing a series posts to spark a conversation. I’m curious about how you frame lesson objectives to maximize student thinking, and I invite you to tell me. If you missed my first post about ways to make the learning objective an invitation and not a mandate, I encourage you to check it out here.

Dan Meyer has written extensively about the importance of creating intellectual need in the mathematics classroom. If we are going to ask students to use mathematics to solve problems, we need to let students internalize problems through inquiry and exploration BEFORE we teach them the mathematics. As Dan suggests, if math is the aspirin, then how do we create the headache?

## The Objective of Objectives, Part One: Invite

Why we teach must align with how we teach. In other words, our professional identity (the reasons why we became teachers in the first place) must be congruent with our choices and our practices in the classroom. When purpose and practice are not aligned, both teachers and students waste energy fighting needless friction in the classroom and learning suffers.

One habit where I continue to see a misalignment between purpose and practice centers on how we post, frame, communicate lesson objectives to our students. All teachers want students to be inspired, motivated, engaged, and curious, yet I’ve witnessed a lot of teachers euthanize student intellect by spending the first 5 minutes of a lesson reading aloud and unpacking a lesson objective that is written on the board.